Exercise 59

Find an equation of the tangent to the curve at the given point.

$$
y=\sqrt{1+4 \sin x}, \quad(0,1)
$$

Solution

The aim is to find the slope of the tangent line at $x=0$. Take the derivative of y.

$$
\begin{aligned}
y^{\prime} & =\frac{d}{d x} \sqrt{1+4 \sin x} \\
& =\frac{1}{2}(1+4 \sin x)^{-1 / 2} \cdot \frac{d}{d x}(1+4 \sin x) \\
& =\frac{1}{2}(1+4 \sin x)^{-1 / 2} \cdot(4 \cos x) \\
& =\frac{2 \cos x}{\sqrt{1+4 \sin x}}
\end{aligned}
$$

Plug in $x=0$.

$$
y^{\prime}(0)=\frac{2 \cos 0}{\sqrt{1+4 \sin 0}}=2
$$

Use the point-slope formula with this slope and the given point $(0,1)$ to get the equation of the tangent line.

$$
\begin{gathered}
y-1=2(x-0) \\
y-1=2 x \\
y=2 x+1
\end{gathered}
$$

Below is a graph of the curve and its tangent line at $(0,1)$.

